

A Suite Of Programs For Pre- And Postimputation Data Checking

N.W. Rayner^{1,2,3}, N. Robertson^{1,2}, Anubha Mahajan¹ M.I. McCarthy^{1,2,4}

1) WTCHG, University Oxford, Oxford, United Kingdom; 2) OCDEM, University Oxford, United Kingdom; 3) Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom; 4) NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, United Kingdom

Introduction

- The availability of the public imputation servers at the Wellcome Trust Sanger Institute and the University of Michigan has greatly reduced the complexity associated with performing an imputation run.
- Despite this, thorough quality control prior to imputation is still vital to ensure the data are correctly aligned to the reference genome.

Figure 2: Information score plotted per chromosome. Plots are coloured red if there are 2 sections of >1MB without variants, indicating possible imputation failures.

Visualisation	Imputation Report For Coh Per chromosome imputation report for cohort WTCCC.	ort: WTCCC
As the output for a single imputation run consists of 132 images and 70	Chromosome index, 22 in total. Skip to the section for a particular of the section	
tables for ease of	Information captured during the processing of this cohort. Property FORMAT	Value OXFORD
visualisation these are collated into a single	UPLOADED	17/02/2016
html file (<i>Figure</i> 8)	Genome-Wide	

- Post-imputation, verifying the run has completed successfully can be tricky to do from log files.
- To simplify these processes we have developed a suite of programs in Perl and Java that check and summarise the data at both the pre- and postimputation stages.

Pre-imputation Checking

- The pre-imputation checking program compares a Plink format marker (.bim) and frequency (.freq) file to the selected reference panel.
- Currently 1000G phase 3 and HRC r1 and r1.1 reference panels are supported.
- The program checks all variants in the .bim file that match the reference for a variety of potential issues (Table 1) using both location information as well as SNP names.

Issue Checked	Removed or updated?
Chromosome and position	Updated
Alleles	Removed
Allele frequency (AF)	Removed if AF difference > 0.2*
Strand	Updated
Palindromic SNPs	Removed if MAF >0.4
Reference allele	Updated
Variant naming	Updated**

Figure 4: Bar graph summary of Information score counts per chromosome.

viewable in any current A: Alternate Allele Freq web browser.

Contact:

The program can also be run to summarise and multiple compare data imputed sets (*Figure 9*).

Availability

All the programs and instructions are available at:

www.well.ox.ac.uk/~wrayner/tools

Future Work

The post-imputation program is reliant on libraries external for chart plotting, we plan to offer the program via a web server to avoid installation issues.

Summary

Alternate Allele Frequency: ariants binned by alternate allele frequency	Genome-Wide	
Alt Allele Frq	Count	%
0.0	34550271	88.131
0.1	1183640	3.019
0.2	784645	2.001
0.3	597669	1.525
0.4	481965	1.229
0.5	393259	1.003
0.6	340346	0.868
0.7	282896	0.722
0.8	239372	0.611
0.9	335496	0.856
1.0	13580	0.035

wrayner@well.ox.ac.uk

mputation INFO Score: Genome-Wid

variants binned by imputation INFO score		
INFO Score	Count	%
0.0	8189606	20.890
0.1	2519897	6.428
0.2	1771425	4.519
0.3	1572599	4.011
0.4	1682161	4.291
0.5	1929613	4.922
0.6	2365593	6.034
0.7	2735890	6.979
0.8	2933246	7.482
0.9	7879712	20.100
1.0	5623397	14.344
Total	39203139	100.000

A: Alternate Allele Frequency vs HRC

Chromosome

Table 1: Potential issues checked for in .bim file. *AF difference used can be set by the user, or removed entirely. **Variant names are not automatically updated although a list of naming differences is produced.

- Summary statistics for the run are written to a log file (*Figure 1*) and for each potentially updatable issue a list of variants affected is produced.
- Variants not matching the reference or failing one of the above cut offs are listed for removal.

Options Set:	
Reference Panel:	HRC
Bim filename:	PI.qcPlus.bim
Reference filename:	HRC.rl-1.GRCh37.wgs.mac5.sites.tab.gz
Allele frequencies filename:	PI.qcPlus.frequency.frq
Allele frequency threshold:	0.2
Matching to HRC	
Position Matches	
ID matches HRC 680362	
ID Doesn't match HRC 48119	
Total Position Matches 7284	81
ID Match	
Different position to HRC 1	953
No Match to HRC 1661	
Skipped (X, XY, Y, MT) 0	
Total in bim file 732119	
Total processed 732095	
Indels (ignored in rl) 1	
SNPs not changed 210061	
SNPs to change ref alt 51652	0
Strand ok 726545	
Total Strand ok 726581	
Strand to change 56	
Total checked 730434	
Total checked Strand 726601	
Total removed for allele Fre	quency diff > 0.2 605
Palindromic SNPs with Freq >	0 4 2076

Figure 5: Plot of information score vs MAF across the chromosome.

These programs simplify the checking of large

0.1 0.2 0.3		C Allele Frequency
ate Allele Freque	ency	
ring variants binned by alte		
	a) a)	
	é é	
ate Allele Freque	é é	ercentage
		* Percentage
by alternate allele frequenc		Percentage %
ate Allele Freque by alternate allele frequence	су	
by alternate allele frequenc	Count	%
by alternate allele frequenc	Count 2710694	% 88.3215
by alternate allele frequenc	Count 2710694 89876	% 88.3215 2.9284
by alternate allele frequenc	Count 2710694 89876 57673 45299	% 88.3215 2.9284 1.8791 1.4760
by alternate allele frequenc	Count 2710694 89876 57673 45299 37595	% 88.3215 2.9284 1.8791 1.4760 1.2249
by alternate allele frequenc	Count 2710694 89876 57673 45299 37595 30222	% 88.3215 2.9284 1.8791 1.4760 1.2249 0.9847
by alternate allele frequenc	Count 2710694 89876 57673 45299 37595 30222 27396	% 88.3215 2.9284 1.8791 1.4760 1.2249 0.9847 0.8926
by alternate allele frequenc	Count 2710694 89876 57673 45299 37595 30222	% 88.3215 2.9284 1.8791 1.4760 1.2249 0.9847
by alternate allele frequenc	Count 2710694 89876 57673 45299 37595 30222 27396	% 88.3215 2.9284 1.8791 1.4760 1.2249 0.9847 0.8926
by alternate allele frequenc	Count 2710694 89876 57673 45299 37595 30222 27396 22100	% 88.3215 2.9284 1.8791 1.4760 1.2249 0.9847 0.8926 0.7201
by alternate allele frequenc	Count 2710694 89876 57673 45299 37595 30222 27396 2100 18508	% 88.3215 2.9284 1.8791 1.4760 1.2249 0.9847 0.8926 0.7201 0.6030

Palindromic SNPs with Freq > 0.4 2076 Non Matching alleles 1757 ID and allele mismatching 1005; where HRC is . 935 Duplicates removed 23

Figure 1: Log file from the pre-imputation checking.

A shell script of Plink commands is created to automate the use of these variant lists within Plink to update or remove variants.

Post-Imputation Checking

- The post-imputation checking program takes information from the output of the current set of imputation programs or servers and produces a range of charts and tables based on information score, alternate AF, MAF and position.
- The resulting plots allow a quick visual assessment of the quality of an imputation run (*Figures 2-7*).